EVHR / EVHR EC

Ceiling Type Heat Recovery Unit

EVHR 820/1020/1520/2020/2520/3020/3520/5020 Ceiling Type Heat Recovery Unit

Index

EVHR

Ceiling Type Heat Recovery Unit

coming typo frout Rocovory offin	
- Unit Components	2
- Performance Data	5
- Technical <mark>Specifications</mark>	10
- Unit Dimensions	11
- Service Space & Installation	11
- Control System	12
Accessories	
- Duct Type Electric Heaters	16
- Duct Type Coils	16

17

17

General Terms and Conditions of Sale

- Sound Attenuator For Circular Ducts

- Ventilation on Demand

The technical specifications and the performance data declared with this logo have been developed by the tests performed in Eneko Energy Laboratory which is established performed in Eneko Energy Laboratory which is established with the development Project support of Tübitak by regarding relevant standards.

Casing & Insulation

High corrosion resistive 200 gr/m Galvanize coated steel is used for the casing. The unit is insulated from inside with 10 mm polyether foam against sound and thermal conduction.

Control System Plug&Play

ENECON control unit is developed for controlling of heat recovery units' equipments, meeting the demands coming from the customers and is user friendly designed. ENECON is capable of controlling the standard equipments and optional accessories. ENECON Control unit can perform the basic functions. Besides, the control unit can be switched on/off via BMS, gets fault signals and controls all the functions via ModBus. Alternative controllers are listed in "Control System"

Aluminum Cross-flow Heat Exchanger

EVHR heat recovery ventilation units have aluminum crossflow, plate heat recovery exchangers. Plate heat recovery exchangers have plates that are produced improved surface areas to provide high efficient and leakage free design. With the optimization of exchanger heat transfer is increased and pressure drop is decreased. Heat recovery exchanger has Eurovent certification.

used in unit, G class filters (according to EN 779 standard) are

used for both exhaust and supply air streams. F class filters

can be also used optionally . F class filters reduce the

available static pressure of the unit for the nominal air flow

rate.

Supply and Exhaust Air Fans

to the motors; the belt and pulley problems are eliminated.

Backward curved plug fans are used in EVER units. Fan blades have high aerodynamic efficient backward curved design. Plug fans are used for high efficiency and low sound levels. With AC Fans, maintenance costs are reduced as the fans are directly connected

EVHR 420 EC/820 EC/1020 EC/1520 EC/2020 EC/2520 EC/3020 EC/3520 EC/5020 EC/6020 EC

Ceiling Type Heat Recovery Unit

High corrosion resistive 200 gr/m Galvanize coated steel is used for the casing. The unit is insulated from inside with 10 mm polyether foam against sound and thermal conduction.

Aluminum Cross-flow Heat Exchanger

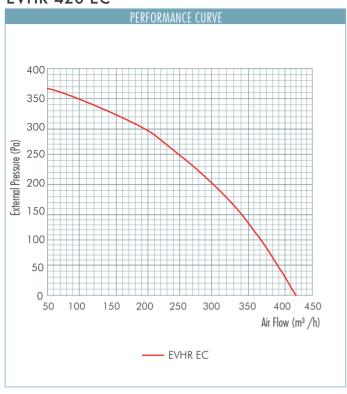
EVHR heat recovery ventilation units have aluminum crossflow, plate heat recovery exchangers. Plate heat recovery exchangers have plates that are produced improved surface areas to provide high efficient and leakage free design. With the optimization of exchanger heat transfer is increased and pressure drop is decreased. Heat recovery exchanger has Eurovent certification.

Control System Plug&Play

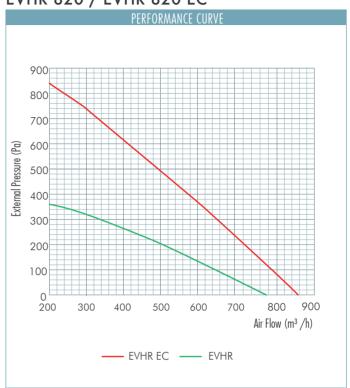
ENECON control unit is developed for controlling of heat recovery units' equipments, meeting the demands coming from the customers and is user friendly designed. ENECON is capable of controlling the standard equipments and optional accessories. ENECON Control unit can perform the basic functions. Besides, the control unit can be switched on/off via BMS, gets fault signals and controls all the functions via ModBus. Alternative controllers are listed in "Control System" part.

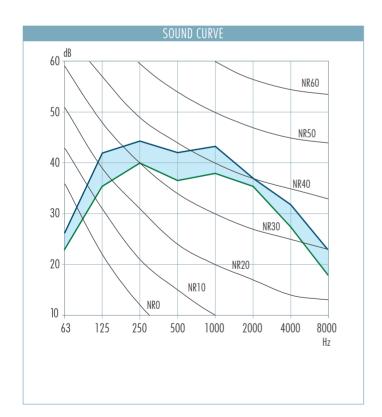
Supply and Exhaust Air Filters

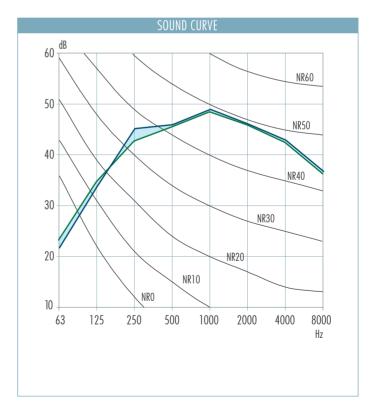
To increase indoor air quality and to protect the equipments used in unit, G class filters (according to EN 779 standard) are used for both exhaust and supply air streams. F class filters can be also used optionally . F class filters reduce the available static pressure of the unit for the nominal air flow rate.


Supply and Exhaust Air Fans

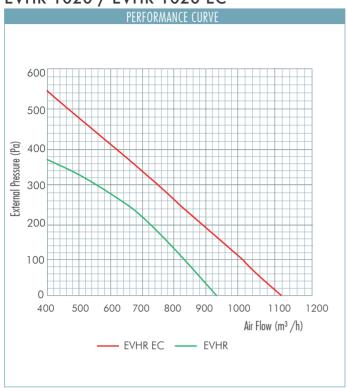
The fans in units are equipped with innovative Electronically Commutated EC motor technology. EC motors have higher efficiency and simple speed control. Fan blades have high aerodynamic efficient backward curved design. EC motors reduce the energy consumption and increase the energy efficiency of the unit. With EC Fans, maintenance costs are reduced as the fans are directly connected to the motors; the belt and pulley problems are eliminated.

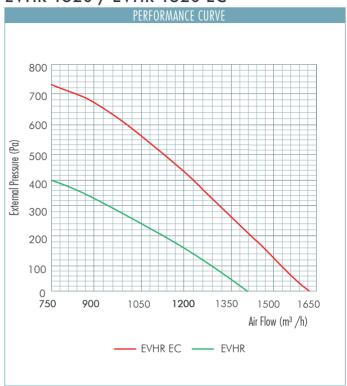


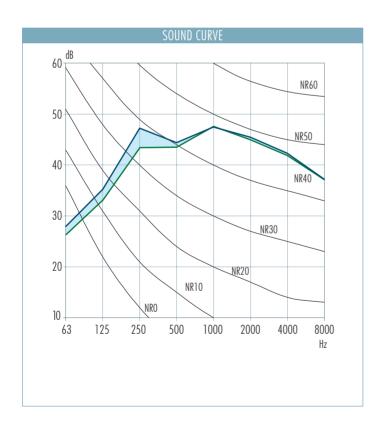


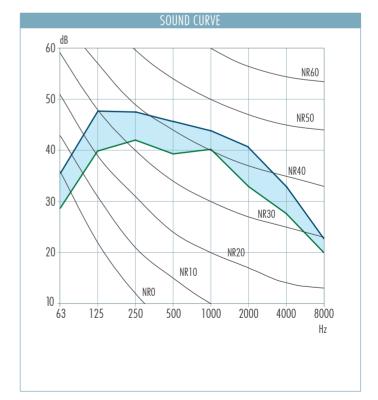

EVHR 420 EC

EVHR 820 / EVHR 820 EC

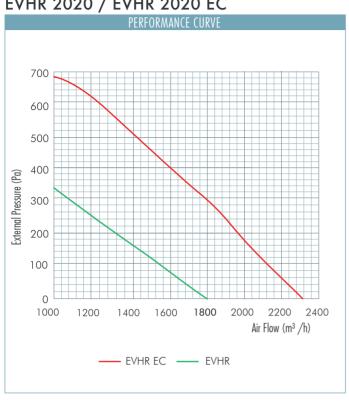


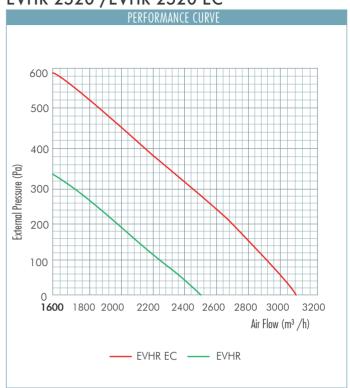

Performance Data

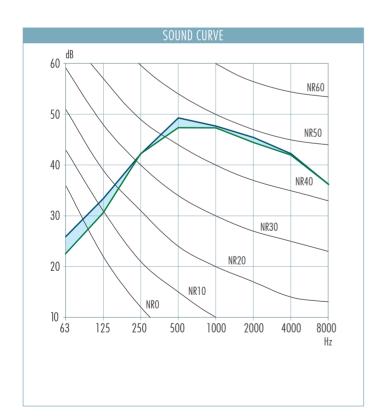


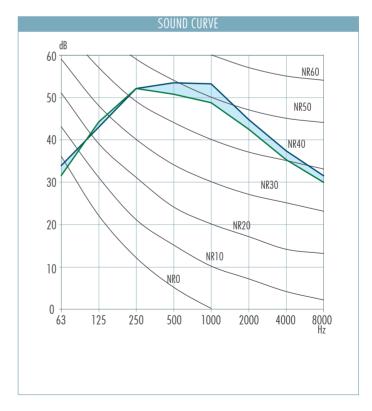

EVHR 1020 / EVHR 1020 EC

EVHR 1520 / EVHR 1520 EC

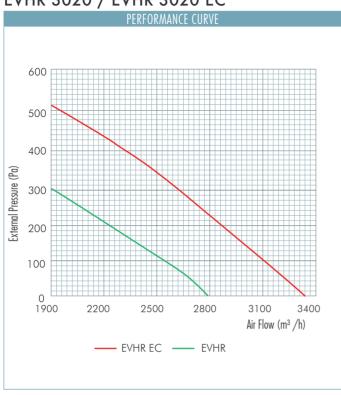


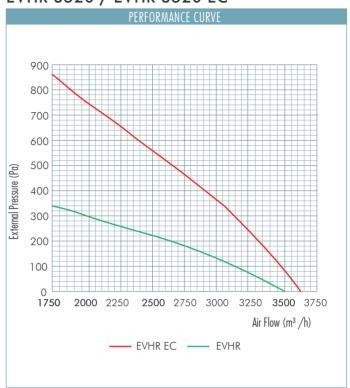


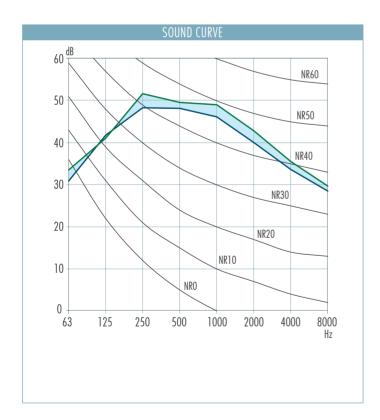


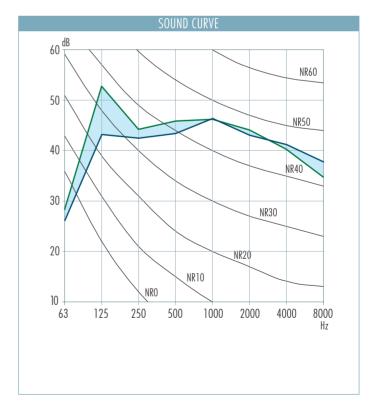

EVHR 2020 / EVHR 2020 EC

EVHR 2520 /EVHR 2520 EC

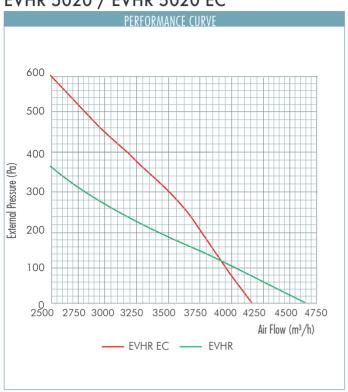


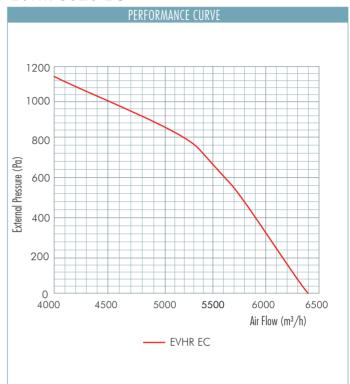

Performance Data

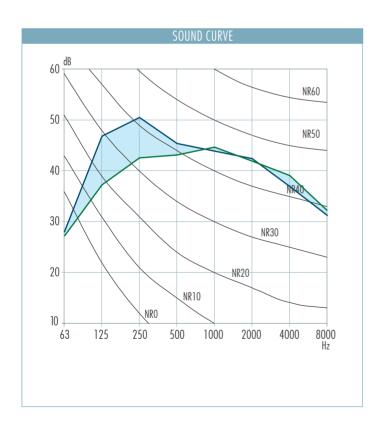


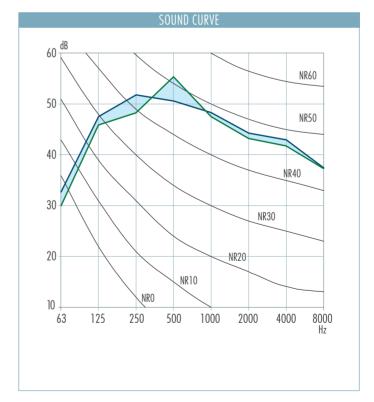

EVHR 3020 / EVHR 3020 EC

EVHR 3520 / EVHR 3520 EC








EVHR 5020 / EVHR 5020 EC

EVHR 6020 EC

Technical Specifications

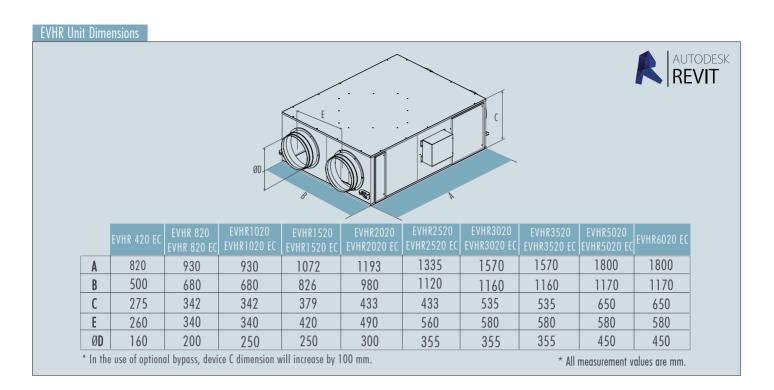
			EVHR 820	EVHR 1020	EVHR 1520	EVHR 2020	EVHR 2520	EVHR 3020	EVHR 3520	EVHR 5020	
	Air Flow *	m³/h	780	930	1440	1800	2440	2780	3500	4650	
u o	Supply Voltage	V/Hz/f		230/50/1~							
ication	Max. Power Consumption	W	204	310	450	450	1030	1030	940	1360	
ecifi	Max. Operation Current	A	0,9	1,36	2	2	4.5	4.5	4.1	6	
II Spe	Max. Sound Pressure **	dB	42	43	46	42	52	52	44	50	
[echnical	Unit Weight	kg	46	46	60	82	104	127	132	164	
Tech	Filter Class			EN 779 Standartına göre G Sınıfı Sentetik Filtre							
呈	Electric Heater***	kW	2	3	3	5	7	8	10	13	
E	E.Heater Supply Voltage	V/Hz/f		230 / 50 / 1~				400 / 5	50 / 3~		
	Heater Coil (90/70 °C)	kW	2.9	4.3	6.4	8.3	11.4	14.2	17	22.8	

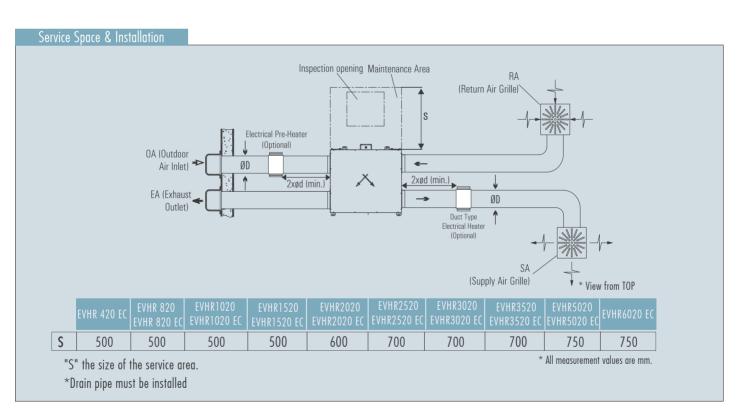
^{*}External static pressure is 0 Pa.

**Measured at 1,5m distance to the unit @ 250 Hz.

***Electrical heater and heater coil are optional. Electrical heaters shall be used before the fresh air inlet of the unit to preheat air where outdoor air is below -3°C and condensation can occur. Also in humid climates return air ducts must also be insulated against condensation.

				EVHR 420	EVHR 820	EVHR 1020	EVHR 1520	EVHR 2020	EVHR 2520	EVHR 3020	EVHR 3520	EVHR 5020	EVHR 6020
				EC	EC	EC	EC	EC	EC	EC	EC	EC	EC
		Air Flow *	m³/h	420	840	1120	1620	2350	3100	3250	3600	4150	6450
7ELLİKLER	<u>ا</u> کے	Supply Voltage	V/Hz/f				230)/ 50 /1~					400/50/3
	\leq	Max. Power Consumption	W	104	340	340	770	940	1000	1000	1560	1480	5000
	0ZEL	Max. Operation Current	А	0,8	3,5	3,5	5	6,2	4,4	4,4	8	7,6	8
		Max. Sound Pressure **	dB	42	43	46	42	52	52	44	50	50	50
	TEKNIK	Unit Weight	kg	41	45	45	53	84	104	130	115	153	165
	ا د ت	Filter Class			EN 779 Standartına göre G Sınıfı Sentetik Filtre								
P F		Electric Heater***	kW	2	3	3	5	7	8	10	10	10	10
	EVHR	E.Heater Supply Voltage	V/Hz/f	f 230 / 50 / 1~				400 / 50 / 3~					
		Heater Coil (90/70 °C)	kW	2.9	4.3	6.4	8.3	11.4	14.2	17	22.8	22.8	22.8

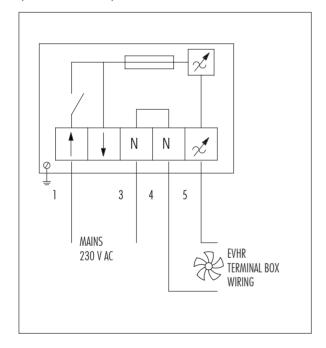

^{*}External static pressure is 0 Pa.

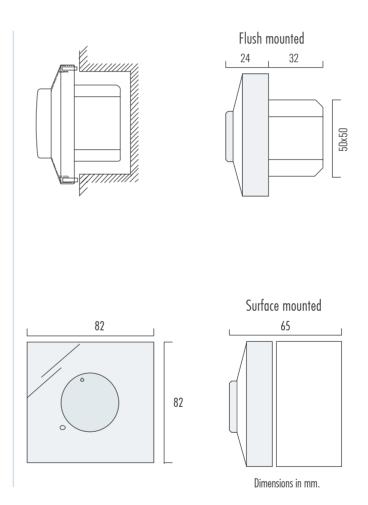

**Measured at 1,5m distance to the unit @ 250 Hz.

***Electrical heater and heater coil are optional. Electrical heaters shall be used before the fresh air inlet of the unit to preheat air where outdoor air is below -3°C and condensation can occur. Also in humid climates return air ducts must also be insulated against condensation.

Unit Dimensions

Control System




Stepless Control

- Stepless flow control
- Internal fuse
- On/Off function
- Flush mounted or surface mounted
- Compact design

Standard EVHR units are delivered to the site with fan speed regulators. With fan speed regulators, both exhaust and supply air fans are regulated and unit also can be switched on/off. Mains electricity is connected to the fan speed regulator where EVHR units shall be connected to the fan speed regulator there after.

EVHR Speed Controller Wiring Diagram (Standard EVHR Units)

Control System

Automati	on Options	Control Cards									
Standard	Ontional	Standard	Standard	Altarnative 1	Altarnative O	Alternative 3					
Sianaara	Optional	Basic	Pro	Allernative 1	Alternative 2	Type 1	Type 2	Type 3			
OA Temperature Sensor		Ø	\otimes	\otimes	\otimes	\odot	\otimes	\otimes			
RA Temperature Sensor		\otimes	\otimes	Ø	\otimes	\otimes	\otimes	\otimes			
SA Fan Control		\otimes	\otimes	Ø	\otimes	\otimes	\otimes	\otimes			
RA Fan Control		\otimes	\otimes	Ø	\otimes	\otimes	\otimes	\otimes			
Filter Contamination Info (Time)		\otimes	\otimes	\odot	\otimes	\otimes	\otimes	\otimes			
Modbus RTU		\otimes	\otimes	\odot	\otimes	\otimes	\otimes	\otimes			
	On/Off Damper Control	\otimes	\otimes	Ø	\otimes	\otimes	\otimes	\otimes			
	Proportional Damper Control	\otimes	×	Ø	\otimes	\otimes	\otimes	\otimes			
	Airflow Control			Ø	\otimes		\otimes				
	Humidity Control			Ø	\odot		\odot				
	CO2 Control			Ø	\otimes		\otimes				
	SA Temperature Sensor	\otimes	\otimes	Ø	\otimes	\bigcirc	\otimes	\otimes			
	On/Off Heating Coil	\otimes	\otimes	Ø	\otimes	\otimes	\otimes	\otimes			
	Proportional Heating Coil	\otimes	\otimes	Ø	\otimes	\bigcirc	\otimes	\otimes			
	On/Off Cooling Coil	\otimes	\otimes	Ø	\otimes	\otimes	\otimes	\otimes			
	Proportional Cooling Coil	\otimes	×	Ø	\otimes	\otimes	\otimes	\otimes			
	Electrical Pre-Heater	Ø	\otimes	Ø	\otimes	\bigcirc	\otimes	\otimes			
	Electrical After-Heater	\otimes	\otimes	Ø	\otimes	\bigcirc	\otimes	\otimes			
	BacNET MSTP	8	\otimes	Ø	\otimes	\bigcirc	\otimes	\otimes			
	Web Browser (TCP/IP)	8	8	Ø	\otimes	\otimes	\otimes	\otimes			
	Weekly Timer	8	\otimes	Ø	\otimes	\otimes	\otimes	\otimes			
	Filter Contamination Info (DPS)	\otimes	\otimes	Ø	\otimes	\otimes	\otimes	\otimes			

Only one of them the defined functions is selectable for this control card.

	(Control Panel	Control Cards								
Panel Type		Panel Descriptions	Standard Basic	Standard Pro	Alternative 1	Alternative 2	T 1	Alternative 3	T 2		
000	Standard-Basic	Wall-mounted type Max:30 m communication ability	S	⊗	⊗	⊗	Type 1	Type 2	Type 3 ⊗		
Constr.	Standard-Pro	Wall-mounted type Max:50 m communication ability	8	8	8	8	8	8	8		
24		Wall-mounted type Max:50 m communication ability	8	8	8	8	\otimes	8	8		
	Wall-mounted type hand panel, IP 30 protection class, Max:100 m communication ability Wall-mounted type room panel, IP 30 protection class, Max:700 m communication ability		\otimes	⊗	8	\otimes	\otimes	⊗	⊗		
			⊗	8	8	8	8	8	\otimes		
		Hand Panel 1: Wall-mounted type, IP 65 protection class for only front side of panel, Max:50 m communication ability Hand Panel 2: Magnet type, IP 65 protection class for whole panel, Max:50 m communication ability	8	8	8	8	\otimes	8	\otimes		
0 O	Alternative-3.3	Magnet type, IP 31 protection class, Max:700 m communication ability	8	8	8	8	\otimes	S	8		

Control System

Selection of Electrical Cable Cross-Section

Unit Model EVHR	Unit Voltage (V)	Unit Power Input (kW)	Current (A)	Fuse (A)	Cable Cross-Section(mm²) for 50M and PF=0.8
820	230	0.2	1	2	1.5
1020	230	0.3	2	3	1.5
1520	230	0.45	3	3	1.5
2020	230	0.45	3	3	1.5
2520	230	1.03	6	10	1.5
3020	230	1.03	6	10	1.5
3520	230	0.94	6	10	1.5
5020	230	1.36	8	10	1.5

Unit Model EVHR	Unit Voltage (V)	Unit Power Input (kW)	Current (A)	Fuse (A)	Cable Cross-Section(mm²) for 50M and PF=0.8
420	230	0.10	1	1	1.5
820	230	0.34	2	3	1.5
1020	230	0.34	2	3	1.5
1520	230	0.77	5	6	1.5
2020	230	0.94	6	10	1.5
2520	230	1	6	10	1.5
3020	230	1	6	10	1.5
3520	230	1.56	9	10	1.5
5020	230	1.48	8	10	1.5
6020	400	5	10	3x16	1.5

Cable Cross-Section Formulas

$$\begin{split} & \textbf{1} \\ & \textbf{I}_{current} = \frac{P}{\textbf{U}.\textbf{CosQ}} \\ & \textbf{I}_{cable} > \textbf{I}_{current} \\ & \textbf{2} \\ & \%e = \frac{100.P.L}{k.S.U^2} \text{, } S = \frac{100.P.L}{k.\%e.U^2} \\ & \%e = \%3 \\ & \textbf{3} \\ & \textbf{I}_{cable} > \textbf{I}_{fuse} \geq \textbf{I}_{current} \\ & \textbf{Cable Cross-Section S} = \texttt{Max (S1, S2, S3, 1.5mm}^2) \end{split}$$

P : Power I : Current U : Voltage

S : Conductor cross section k : Conductor coefficient L : Conductor length %e: The voltage drop

• Example of Cable Cross-Section Calculation

P: 2,6 kW L:50m **U**: 230V %e: %3 **PF: CosQ**: 0,8 $k:56m/\Omega$

$$I_{current} = \frac{2600 \text{ W}}{230.0,8} = 14.2 \text{ A}$$

The cable will be used, is selected from the cable cross-section table so that the equivalent ampere value in the table should be higher than calculated "I current" value.

$$S1 = 1.5 \text{ mm}^2$$

$$\%e = \%3$$

$$S = \frac{100.2600.50}{56.3.230^2} = 1.46 \text{ mm}^2$$

$$S2 \ge 1.46 \text{ mm}^2 \ge 1.5 \text{ mm}^2$$

$$S2 = 1.5 \text{ mm}^2$$

3

 $I_{cable} > I_{fuse} \ge I_{current}$

$$I_{cable} > 16A \ge 14.2A$$

"I fuse" which will be higher than "I current", is selected.

The cable will be used, is selected from the cable cross-section table so that the equivalent ampere value in the table should be higher than selected "I fuse" value.

$$I_{cable} = 24A$$

$$S3 = 1.5 \text{ mm}^2$$

Cable cross-section $S = Max (S1, S2, S3, 1.5 mm^2)$

$$S = Max (1.5, 1.5, 1.5, 1.5)$$

$$S = 1.5 \text{ mm}^2$$

Accessories

Duct Type Electric Heater

Electric heaters are optionally supplied in cold climates for supply air and in extreme climates for both supply and outdoor air sides against freezing. Electric heaters are manufactured according to circular or rectangular duct systems. Standard types are produced of stainless steel heating elements and galvanized metal casing. Stainless steel casing is also avaliable.

Electric heaters are equipped with two excessive temperature protection. When inside of the electric heater's temperature is 70°C, "automatic excessive temperature protection" enables and electric heater disables automatically. When 70°C automatic temperature protection doesn't enable or the inside of the electric heater's temperature is 110°C, the second

protection enables and electric heater disables until the manual reset will be done.

The electrical heaters, designed as maximum 2 steps, step automatically according to temperature that is set on room control panel with control panel. Eneko electric heaters are connected in Delta connection in standard models.

Heating Capacity Calculation

 $Q = 0.33x \ V \ x \ (T_2 - T_1)$

Q : Heating Capacity (W)

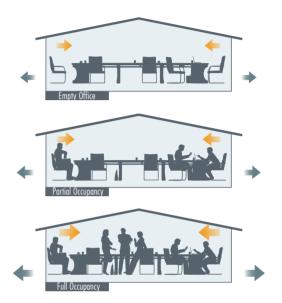
V : Air Flow through electric heater (m³/h)

T₁: Air temperature before the heater (°C)

 T_2 : Air temperature after the heater (°C)

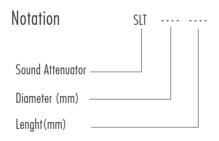
Duct Type Coils

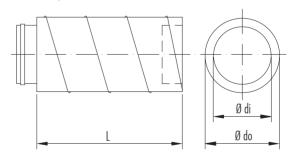
Duct type heating/cooling coils are assembled in cabin as suitable to mount inside duct and have standard capacity. Coils consist of copper tubes and aluminum fins. Inlets and outlets of cabin are suitable for circular duct connections as in heat recovery ventilation units. Additionally, cooling coils have drain pan and extra insulation to prevent condensation of cabin. Both heating and cooling coils can be controlled seperately as on/off via unit automation system.


Ventilation on Demand

Air Quality Sensor is mounted to the return air duct and is connected to control system of unit. The set point for the desired indoor air quality is set during the installation. According to the demand indoors, EVHR units are modulated automatically by the sensor. Annual energy consumption of the unit is reduced as a result of the modulation, ending in reduction in energy costs.

Fresh air demand in a space is calculated according to human occupancy and/or physical properties of the conditioned space. The calculation is based on the maximum indoor occupancy. In practice maximum occupany is observed for only a small period of time annually where lower air flow rates will be sufficient for most of the year. By reducing the air flow rate according to the fresh air demand; it is possible to reduce units electrical consumption and reduce also energy consumption used to condition the space. It should be noted that by increasing fresh air rate, indoors heating/cooling demand will also be increased.


With the help of control kit of unit, it is possible to regulate fresh air rate according to the demand indoors. Indoor air quality sensor or CO_2 sensor is mounted to the return duct or the conditioned space and the demanded condition is set. A 0-10 V signal will be created and EVHR unit's air flow will be regulated according to the signal.



Sound Attenuator For Circular Ducts

Sound attenuators are designed for standard duct dimensions. Various lengths are avaliable according to attenuation demand. Sound attenuation capacities are given in the table. For better performance sound attenuators can be used in series. For the best result the sound attenuators shall be installed just after the unit.

Sound Attenuation Capacity [dB]

SLT	63	125	250	500	1k	2k	4k	8k
200-300	1	2	3	6	10	14	12	14
200-600	2	3	6	7	13	17	18	20
200-900	3	4	7	10	16	18	21	22
250-300	1	2	6	6	13	16	14	15
250-600	2	3	7	7	18	21	20	22
250-900	3	4	9	8	21	24	21	23
300-300	1	2	4	4	10	12	12	15
300-600	1	3	6	7	13	15	17	19
300-900	2	4	7	8	15	17	18	21
355-600	1	3	8	8	9	6	5	7
355-900	4	4	13	13	11	7	6	8

Sound Attenuator Dimensions [mm]

Journa Arronograf Difficultions [mini]										
	SLT	length (L)	Ø di	Ø do						
	200-300	300	200	260						
	200-600	600	200	260						
	200-900	900	200	260						
	250-300	300	250	310						
	250-600	600	250	310						
	250-900	900	250	310						
	300-300	300	300	360						
	300-600	600	300	360						
	300-900	900	300	360						
	355-600	600	355	415						
	355-900	900	355	415						

General Terms and Conditions of Sale

GENERAL

The sale of all Products of ENEKO shall exclusively be made on the basis of these General Terms and Conditions of Sales. Any other conditions and General Conditions of Purchase of the Buyer are not accepted.

OFFERS

Our offers are non-binding and without obligation. Contracts for delivery and all other agreements (including subsidiary agreements) as well as declarations of our representatives shall only become legally binding for us after written confirmation. We do not render planning service.

Proposals made and information provided by our representatives shall be non-binding. Illustrations, drawings, dimensions and weights or other performance data shall only be binding if this is expressly agreed in writing.

TERMS OF ORDER

Purchase orders shall be sent to ENEKO in written form and shall be non-binding unless they are accepted by written confirmation (order confirmation) from ENEKO. Each order shall include properly identified Products ordered and relevant shipping dates.

Prices are net Ex Works according to current Incoterms unless stated otherwise and do not include any kind of taxes. Prices are valid at the date of delivery will be applied. We reserve the right to adjust prices for confirmed orders as well to reflect any increase in our costs for any reason beyond our control like force majeure, shortage of primary material or labor strikes, official orders, transportation or similar problems. In this case, a new price agreement shall be required for higher rates. If such an agreement is not made, we shall be entitled to withdraw from the contract by written notice within 15 days.

TERMS OF PAYMENT

Payments shall be carried out according to the contractual terms as defined and set forth in the order confirmation. If the payment conditions have not been agreed upon conclusion of the contract, the payment terms and payment dates specified in our invoices shall be binding. Deadlines for discounts and periods allowed for payment shall begin to run upon receipt of the invoice. Payments by draft, bills of Exchange or anyway extended payments shall mean neither credit novation, nor prejudice to the Retention of Title agreement, nor to territorial competence. If buyer fails to make payment by due date, we are entitled to charge the buyer with a relevant interest on the unpaid amount.

TERMS OF DELIVERY

Delivery time information is only approximate. We shall only be in default if the performance is due and a written demand for payment was issued. Delivery day is the day of dispatch Ex Works. We shall also not be liable with regard to bindingly agreed periods and dates in the event of delays an delivery and of performance due to force majeure and events which considerably complicate or make delivery impossible not only temporarily-strike lockout, breakdown, delay in supply with important raw and auxiliary materials even if the delay occurs at our supplier, in particular. These delays entitle us to postpone delivery for the period of the impediment plus a reasonable start-up period or to withdraw from the contract as a whole or in part. If delivery time is extended or we are released from our delivery commitment, the buyer may not derive a claim for damages from it. However, we may only rely on the circumstances mentioned if we notify the buyer immediately. We shall be entitled to make part deliveries. Any part delivery shall be considered as independent transaction. In case of default, our liability is limited to contract-typical foreseeable damage.

General Terms and Conditions of Sale

SHIPMENT

Shipment is made for the buyer's account. Mode of shipment and shipping route, transport and packaging and other securities respectively shall be at our choice. We shall be entitled, however, not obliged to insure deliveries in the name and for account of the buyer. Risk passes to the buyer when shipment is handed over to the person performing the transport or left our Works for shipment. If shipment is delayed upon buyer's request, risk passes to the buyer with the ready for shipment note. If ordered goods are rejected after the ready for shipment note, we shall be entitled to request payment and store the goods at buyer's expense. Discharge of the goods is made at buyer's expense.

RETENTION OF TITLE

In any event ENEKO shall retain full ownership of all materials supplied whilst the payment conditions of the entire amount have not been complied with, said materials may be removed from the customer at our request. Should the customer be declared bankrupt or insolvent and has not made paid the entire amount of payments. ENEKO shall be entitled to recover the goods. ENEKO may interrupt the supply without incurring any liability whatsoever if he had notice of or became aware of a decrease in the creditworthiness of the purchaser or if any of the existing negotiable instruments or debts were not properly complied with, shall result as being unpaid and protested.

WARRANTY

ENEKO Products are under warranty (defect in material or workmanship) for 2 years from the date of sale reflected on the invoice. Under this warranty, ENEKO is under the obligation to replace the part requested under warranty.

The followings are excluded from ENEKO warranty:

- Normal wear and tear
- Defective assembly or handling
- Third party compensation

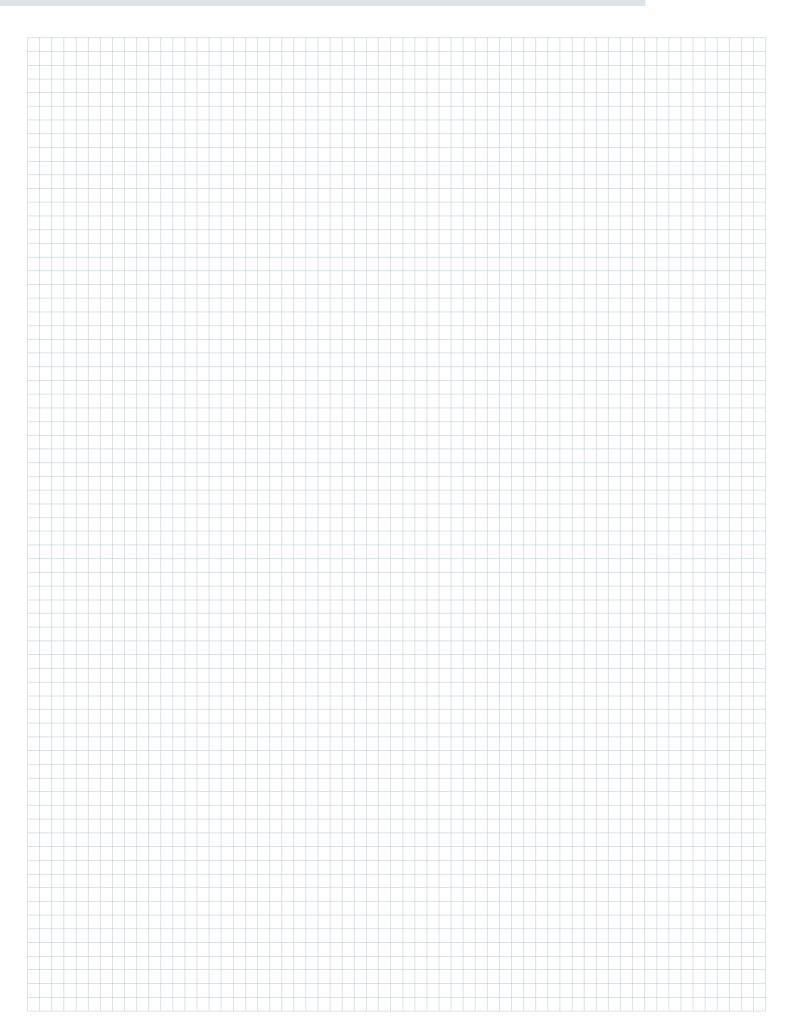
Parts the subject of a claim shall be sent to our warehouse as carriage paid with relevant report completely filled in, wherein the parts shall be subjected to analysis.

HABILITY

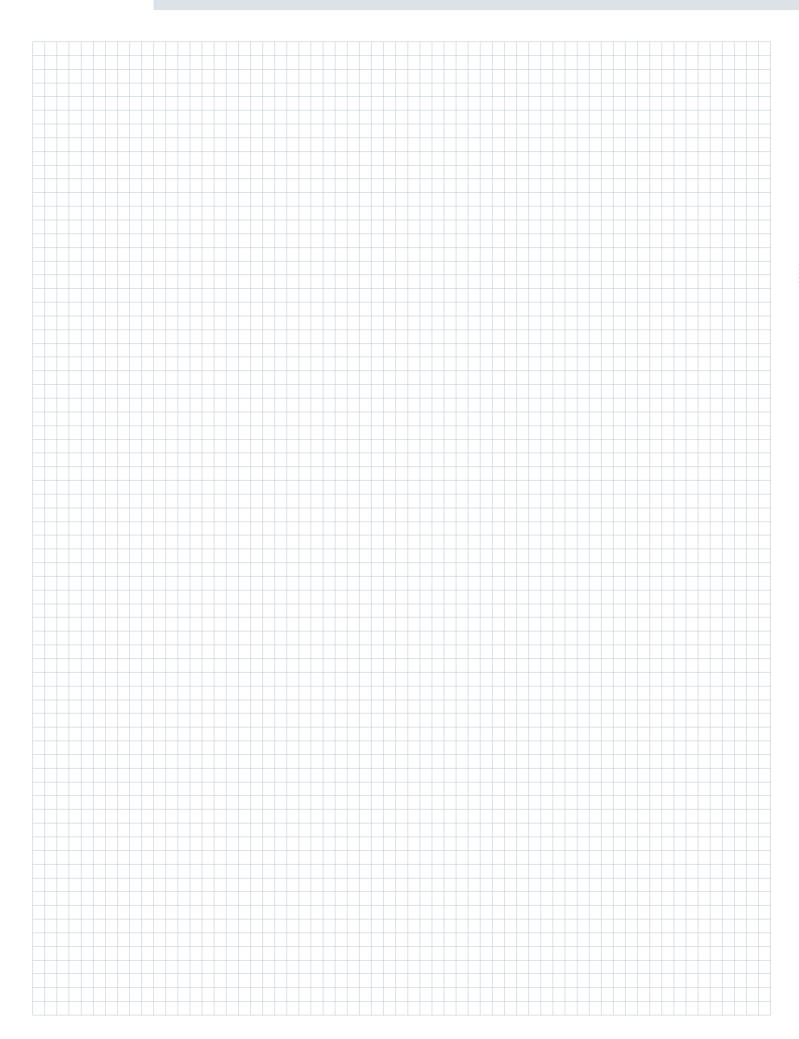
ENEKO, for any losses/damages, shall only be responsible within the limits of the law. Owing to basic obligations undertaken by simple negligence, if the contract is violated, ENEKO's liability shall be limited to compensate for losses which are emerged specific and predictable. ENEKO shall not carry any responsibility in case of a single negligence in breach of non-essential contractual obligations.

PROPERTY RIGHTS

The purchaser in no event and under no circumstances whatsoever shall publish or use the trademark, trade name or logo of ENEKO without a prior written permission.



GOVERNING LAW AND JURISDICTION


This agreement shall be governed with all aspects of the Turkish Law. The courts of Izmir/Turkey shall have an exclusive jurisdiction to adjudicate any dispute arising under or in connection with this agreement.

Notes

Notes

ISTANBUL

Address: Ofisim Istanbul Plaza - Cevizli Mah. Tugay Yolu Caddesi B Blok

No:18 D:40-41, 34846 Maltepe/Istanbul - TURKEY

: +90 216 455 29 60 / +90 216 455 29 61 : +90 216 455 29 62

Fax. E-mail: satis@eneko.com.tr

Address: 10000 Sok. No:30 AOSB 35620 Cigli/Izmir - TURKEY

Tel. : +90 232 328 20 80 : +90 232 328 20 22 Fax. E-mail: info@eneko.com.tr

Web : www.eneko.com.tr In parallel with our ongoing product development in R&D department, all rights of changing all technical specifications are reserved by ENEKO without any declaration and notice.

